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Abstract
The temperature dependence of the spin polarization of type-I half-metallic
ferromagnets is investigated and compared with that of other magnetic
materials, such as semimetals, strong and weak ferromagnets, and exchange-
enhanced Pauli paramagnets. Stable atomic moments, as realized by strong
intra-atomic exchange, exhibit a nonzero spin-down density of states (DOS)
at finite temperatures. This thermal spin mixing means that the conductivity
of the ‘insulating’ spin channel is always nonzero and that half-metallic
ferromagnetism is an idealized limit. At zero temperature, similar effects
are caused by intersublattice interactions, spin–orbit coupling and crystal
imperfections. With increasing interatomic hopping, the moment becomes
unstable, and Stoner-type thermal excitations yield an additional reduction of
the spin polarization. In the Stoner limit, the hybridization gap closes far
below the Curie temperature, and the corresponding transition temperature
T ∗ increases with increasing hybridization gap and decreasing band width.
Correlations are analysed by a version of the Kondo model and by an
unrestricted Hartree–Fock approximation, and it is argued that correlations are
less important than the leading one-electron contributions.

1. Introduction

One approach in spin electronics is to use half-metallic ferromagnets or half metals [1–3]. Ideal
band gap half metals have nonzero ↑ and zero ↓ densities of states (DOSs) at the Fermi level,
or vice versa, so there is only one spin channel for conduction. This translates into a spin-
dependent conductivity and can be exploited in various applications. A key aspect of half-
metallic ferromagnetism is finite-temperature behaviour of the spin polarization, especially
at the Fermi level. Both experiment and theory indicate that finite-temperature excitations
are very effective in destroying the spin polarization. A striking experimental feature is the
onset of ‘normal’ ferromagnetism above 80–100 K in the semi-Heusler alloy NiMnSb [4] and
in CrO2 above 50–100 K [5]. Furthermore, real-structure features such as defects, surfaces,
and interfaces may drastically reduce the spin polarization [3]. Electron states in half metals
may be itinerant or localized, but even in the itinerant case, the finite-temperature behaviour
exhibits localized features [6], very similar to the situation encountered in ordinary itinerant
ferromagnets [7, 8].
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Figure 1. Schematic density of states in a type-IB half metal: (a) one-electron ground state, (b) effect
of spin mixing at T > 0 and (c) inclusion of non-quasiparticle states at T = 0.

A number of experimental and theoretical aspects of half metallics and some specific
materials have been reviewed recently [2, 3, 9–12]. This paper focuses on the finite-temperature
behaviour of typical hybridization-gap half metals and includes both band-structure and
correlation effects. One question is how the density of states (DOS) is modified. Figure 1
illustrates this point by comparing typical densities of states. Figure 1(a) shows the zero-
temperature ↑ and ↓ densities of states D(E) for a typical half metal. The DOS is characterized
by a spin splitting �s, and we see that D(EF) = 0 for ↓ electrons. Figure 1(b) illustrates the
modification of the DOS due to thermally activated spin mixing [13, 14]. We see that this
mechanism yields a nonzero D(EF) for ↓ electrons. Finally, figure 1(c) shows how the zero-
temperature DOS is modified by a different mechanism, namely electron–magnon interactions
leading to nonquasiparticle states [12, 15]. Here the ↓ DOS remains nonzero, but the onset
of a nonzero ↓ DOS just above the Fermi level indicates that these excitations may become
important at finite temperatures.

As analysed by Skomski and Dowben [13], the reduction of the spin polarization due to
spin mixing reflects the temperature dependence of the magnetization. For one-component
magnets, a simple formula was obtained, and it was mentioned that crystal-specific features
modify the picture [3, 13]. The same authors concluded that noncollinear sublattice effects
play an important role in the realization of the spin polarization [3, 16]. More recently, a first-
principles study by the Blügel group [17] has emphasized the role of hybridization effects, in
addition to confirming the importance of local and global noncollinearities.

The main focus of this review is on how intra-atomic exchange and interatomic hopping
modify the density of states and affect the finite-temperature behaviour of half-metallic
ferromagnets. A more practical question is: what structural and electronic features determine
the reduction of the spin polarization at finite temperatures? Throughout the paper, we will
compare half-metallic ferromagnetism with other types of magnetically ordered solids, such
as itinerant ferromagnets and antiferromagnets, semimetals, Kondo magnets, and very weak
itinerant ferromagnets.

2. Half metals and related magnetic materials

2.1. Classification of half metals

Half metals have been classified by Coey and Venkatesan [2]. The are five main classes (I–V),
each divided into subclasses A and B depending on whether the conductivity is realized by ↑
2
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Figure 2. Simplified Stoner-type picture of itinerant ferromagnetism: (a) strong ferromagnet,
(b) weak ferromagnet, and (c) Pauli paramagnet. Transitions from (a) to (b) and (c) may be realized,
for example, by lattice compression, but thermally activated transitions to (c) are uncommon in
simple ferromagnets.

electrons (A) or by ↓ electrons (B). Type-I half metals (delocalized hybridization-gap materials)
are similar to strong ferromagnets but are characterized by the absence of 4s electrons at the
Fermi level. Typical examples are CrO2 (IA), NiMnSb (IA), and Mn2VAl (IB), and a schematic
IA DOS is shown in figure 1(a). Type-II half metals (localized hybridization-gap materials)
such as Fe3O4 (IIA) are nonmetallic due to narrow 3d bands but otherwise similar to type-I
half metals. Their conductivity reflects the thermally activated hopping of ↑ (IIA) and ↓ (IIB)
electrons.

In type-III half metals, or transport half metals, D(EF) > 0 for both ↑ and ↓
electrons, but for one spin direction, the electrons are localized. An example is the
manganite La0.7Sr0.3MnO3, which contains mobile Mn electrons of eg character. Finally, most
semimetals and semiconductors are nonmagnetic, but some carry a ferromagnetic moment
and can be classified as type-IV and type-V half metallics, respectively. Semimetals, such
as Bi, are defined by small carrier densities due to marginal overlap between valence and
conduction bands. Unlike semiconductors, they have no band gaps, but the low carrier
densities characteristic of both types of material lead to relatively large ranges of magnetic
interactions [18, 19].

2.2. Relation to strong and weak ferromagnetism

A key aspect of the finite-temperature depolarization is the nature of the excitations that reduce
the spin polarization. Half-metallic ferromagnetism is closely related to strong ferromagnetism,
except that ordinary strong ferromagnets, such as Co and Ni, have ↑ and ↓ 4s electrons at the
Fermi level. Figure 2 compares schematic densities of states (DOSs) for strong ferromagnets,
weak ferromagnets, and Pauli paramagnets. The figure epitomizes the interpretation of half-
metallic ferromagnetism as a delocalized or itinerant phenomenon.

Simplifying somewhat, itinerant ferromagnetism is caused by the Coulomb interaction
V12(r, r′) = n↑(r)n↓(r′)/4πεo|r − r′| between the electrons, where n↑ and n↓ are the particle-
number operators for the two spin orientations. In this expression, it is not necessary to consider
pairs of ↑↑ and ↓↓ electrons, because the Pauli principle forbids the occupancy of any state
by electrons of parallel spin. Introducing the total particle number n = n↑ + n↓ and the spin
polarization s = n↑ − n↓, one obtains that n↑n↓ = (n2 − s2)/4. This shows that the Stoner
exchange favours ferromagnetism, s > 0. Depending on the context, this mechanism is known
as intra-atomic exchange, Stoner exchange, or Hund’s rule exchange.

3



J. Phys.: Condens. Matter 19 (2007) 315202 R Skomski

In the simplest case, itinerant magnetism is described by the Stoner theory. It uses the
approximate relation

n↑n↓ = n↑〈n↓〉 + n↓〈n↑〉 (1)

to map the complicated many-electron interactions V12(r, r′) on a effective or mean field
Veff(r) ∼ I 〈s〉. Here the Stoner parameter I ∼ ∫ V12(r, r′) dV dV ′ describes the strength
of intra-atomic Coulomb interaction. Essentially, the Stoner theory is a one-electron theory on
a Hartree–Fock level, described by a single big Slater determinant. It ignores correlation effects
which go—by definition—beyond the use of a single determinant. The Stoner interaction
I ≈ 1 eV competes against one-electron hybridization energies (hopping energies), which
are described by the d-band width W or, more precisely, by the density of states D ∼ 1/W .
Pronounced hopping yields low-lying bonding states populated by ↑↓ electron pairs, but
in sufficiently narrow bands, the Stoner interaction dominates and the material becomes
ferromagnetic. The corresponding condition D(EF)I > 1 is known as the Stoner criterion,
and, in the ferromagnetic phase, the spin splitting Ds is proportional to I .

Figure 2 shows the vanishing of the magnetic moment in the itinerant limit. In some
materials, transitions between figures 2(a), (b) and (c) can be tuned by varying the lattice
parameter [8, 20], but thermally activated Stoner transitions are a different story. Thermal
excitations may destroy the magnetic moment by smearing the Fermi level, but typical
exchange splittings are of the order of 1 eV, corresponding to temperature differences of order
10 000 K. In fact, the mechanism of figure 2 greatly overestimates the Curie temperature Tc of
strong ferromagnets and makes the physically unreasonable prediction that the atomic moments
vanish at Tc.1 The failure of the Stoner theory is due to spin fluctuations [7, 21–25], that is,
M = 0 at Tc reflects the thermal randomization of atomic spin directions in combination with
well-conserved atomic moments.

Weak ferromagnets are subclassified into nearly strong ferromagnets, such as Fe, and very
weak itinerant (VWI) ferromagnets, such as ZrZn2 [25]. Nearly strong ferromagnets exhibit
strong spin fluctuations and behave similarly to strong ferromagnets. In VWI ferromagnets,
the Stoner criterion is barely satisfied, the ferromagnetism is unstable, and the magnetic
moments are drastically reduced at the Curie temperature. In this rather exotic regime,
thermal excitations yield a transition from weak ferromagnetism, figure 2(b), to metallic
paramagnetism, figure 2(c). A similar subclassification exists for paramagnets, distinguishing
ordinary Pauli paramagnets from exchange-enhanced Pauli paramagnets such as Pd and Pt.
Exchange-enhanced paramagnets are close to satisfying the Stoner criterion and are easily spin
polarized by magnetic neighbours. They exhibit nearly ferromagnetic regions (paramagnons)
reminiscent of VWI spin fluctuations.

The localized (or Heisenberg) and delocalized (or Stoner) regimes in strong and VWI
ferromagnets, respectively, are idealized limits. The real situation is intermediate, but
the question arises whether half metals are closer to strong ferromagnetism or to VWI
ferromagnetism. For half metals, the situation was analysed by Otto et al [6], who advocated
the local-band picture, that is, strong ferromagnetism (section 3). However, this view has not
remained unchallenged and seems to be only partially adequate (section 5).

3. Spin mixing at finite temperatures

The randomization of the spin directions in the localized picture involves Coulomb interactions
on a local scale and is, in a strict sense, a many-body effect. However, essential features
of the mechanism are reproduced on a one-electron level, by treating n↑ and n↓ as local

1 By definition, Tc implies the vanishing of the volume-averaged moment M ∼ 〈m〉, but this is usually realized as an
average over all moment directions m/m whereas m = |m| remains finite.
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Figure 3. Spin directions and wavefunctions: (a) T = 0 and (b) T > 0. A classical vector pointing
in a direction above the equator plane (x–y plane) has no projection in the −z direction, but in
quantum mechanics there is a nonzero probability ψ∗↓ψ↓ of realizing the ↓ state.

operators with quantization axes parallel to the atomic magnetic moments [7, 20]. This
does not mean that correlation effects are unimportant in half metals. One example is the
Kondo effect, which is closely related to the double exchange in transport half metals such as
La0.7Sr0.3MnO3 (section 5.3). The limit of strong intra-atomic exchange corresponds to the
picture of figure 1(b) [13]. Interatomic hopping leads to conduction in the ↑ channel of a type-
IB half metal if there are ↓ states at the Fermi level. These states are automatically created by
spin disorder, because any misaligned spin has a nonzero projection in the ↑ direction (spin
mixing). Figure 3 illustrates this quantum effect for isolated atoms.

A semiquantitative treatment of the spin mixing is achieved by specifying hopping, orbital
and intra-atomic energies. A simple tight-binding model Hamiltonian is

Hμνikσσ ′ = tμνikδαβ − Vμδμνδikδαβ − Iδμνδikei · σ αβ. (2)

Here tμνik = 〈φμ(r − Ri)|t|φν(r − Rk)〉 is the hopping integral between a μ-type orbital
at Ri and a ν-type orbital at Rk , Vμ is the crystal-field energy for the μ-type orbital, and ei

is the local magnetization direction. In the absence of spin disorder, the spin structure of a
ferromagnet is described by the Pauli matrix σz whose ↑ and ↓ eigenfunctions are (1, 0)T

and (0, 1)T, respectively, and yields an exchange-energy difference of 2I between spin-up and
spin-down electrons. The starting point for describing finite-temperature spin disorder is the
standard spin-1/2 rotation matrix

U(φ, θ) =
(

cos( θ2 )e
iφ/2 sin( θ2 )e

−iφ/2

− sin( θ2 )e
iφ/2 cos( θ2 )e

−iφ/2

)
(3)

which rotates a ↑ spin by the angles θ and φ. The ei · σ αβ exchange term
in (1) is diagonalized by U−1 = U+(φi , θi). Applying the transformation Ut =
U+(φ1, θ1) · · · U+(φi , θi )U+(φi+1, θi+1) · · · U+(φN , θN ) to equation (2) yields

Ht
μνikαβ = tμνikγUαγ (φi , θi)U

+
γβ(φk, θk)− (Vμδαβ + Iσzαβ )δμνδik (4)

where the thermal spin disorder has been mapped onto random hopping integrals.
The low-temperature behaviour of (1) is dominated by long-wavelength spin waves, where

neighbouring spins remain nearly parallel. Using U(φk, θk) ≈ U(φi , θi) and exploiting the
identity U(φi , θi)U+(φi , θi) = I, we find that U(φi , θi)U+(φk, θk) ≈ I. This means that
the transformed hopping integrals are very similar to those at zero temperature, and the total
wavefunction obtained via Ut is a good approximation. Figure 1(b) shows a typical density of
states for nonzero spin disorder. Compared to figure 1(a), the ↓ DOS exhibits minor distortions,
but in the ↑ gap the DOS changes qualitatively, from zero to nonzero. An estimate for the
magnitude of this spin-mixing contribution to the DOS is

D↑(E) ≈ M(0) − M(T )

M(0) + M(T )
D↓(E) (5)

5
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where M(T ) is the magnetization. This means that the resistance of the ↑ channel changes
from infinity to a finite value.

It is important to note that equations (2) and (4) include intersublattice interactions, global
noncollinearities, and hybridization effects on a tight-binding level. This can be seen from the
hopping integrals tμνik , which depend on both the involved atomic orbitals (μ and ν) and on
the sublattice affiliation of the neighbouring atoms (i and k). However, the hopping integrals
determine whether the system is ferromagnetic or paramagnetic, and in the derivation of (5) it is
assumed that the atomic moments rotate without change in magnitude (strong ferromagnetism).
This is reasonable for low temperatures but breaks down when finite-temperature excitations
start to distort the density of states [3].

4. Sublattice effects

A striking feature of most or all half metals is the strong temperature dependence of the
spin polarization, and (5) contributes to this dependence. One reason is that the temperature
dependence of the spin polarization of half-metallic ferromagnets is more pronounced than
in ordinary metallic ferromagnets. In this section, we consider half-metallic ferromagnets
that contain two or more magnetic sublattices with temperature-independent atomic moments,
whereas section 5 focuses on mechanisms that may reduce the magnetic moment.

Half metals have relatively complicated crystal structures, such as Heusler (Mn2VAl),
semi-Heusler (NiMnSb), and rutile (CrO2) structures, and their magnetism cannot be reduced
to that of simple metallic magnets [16]. In particular, atoms belonging to nonequivalent
crystallographic or magnetic sites have different magnetic moments (sublattice formation). An
extreme but rather trivial case is bulk antiferromagnetism, where the ↑ and ↓ spin channels are
equivalent and nothing is gained by using spin-polarized electrons. Cases of interest in half-
metallic ferromagnetism are intermediate between ferromagnetism and antiferromagnetism and
include both collinear ferromagnets or ferrimagnets and noncollinear spin structures. There
are three reasons for the importance of these structures. First, from other ferromagnets it
is known that sublattices have a strong effect on the temperature dependence of the net
magnetization [8, 26]. In small magnetic fields, such as of interest in the present context,
this effect may be very pronounced, but high magnetic fields tend to align sublattices and
smooth the corresponding noncollinearities. This enhances the magnetization well below Tc.
Figure 4 illustrates this point by comparing M(T ) curves for zero magnetic field (solid line)
and moderate to high magnetic fields (dashed line). Second, noncollinearities are harmful to
spin-dependent transport, because they yield a second spin channel for conduction. Third,
different transition-metal sublattices yield, in general, different spin-scattering contributions
per atom.

There are generally many sublattices. On a mean-field level, a system with N sublattices
yields N nonlinear equations with N unknowns [27], and the determination of the Curie
temperature amounts to the diagonalization of an N × N matrix Ji j , where i and j denote
the sublattices. In ferromagnets (FMs), the corresponding eigenmodes are plane waves
(spin waves), and the ground-state spin structure is characterized by the wavevector k = 0.
Figure 4 shows the temperature dependence of the magnetization for a typical two-sublattice
ferromagnet. In high field, the behaviour is reminiscent of that of ordinary ferromagnets, but in
low field, we see an inflection which strongly affects the ↓ DOS of equation (5).

In antiferromagnets (AFMs), k = π/a describes an antiparallel spin orientation
between nearest neighbours. As in some elemental rare earths, competing interactions may
give rise to noncollinearities with incommensurate wavevectors, even in perfectly periodic
crystals. Incommensurate means that the wavelength is unrelated to integer multiples of

6
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Figure 4. Magnetization of a two-sublattice magnet in high (dashed line) and low (solid line) fields.
The noncollinearity behind the reduced low-field magnetization (solid line) reflects competing
exchange (sections 4 and 5) rather than spin–orbit coupling (section 6).

the lattice constant. For example, in NiMnSb, there is a magnon mode of wavevector
koa/2π ≈ 0.3, corresponding to a magnetization angle of about 60◦ between next-nearest
Mn neighbours [3, 4]. Note that this noncollinearity reflects to competing exchange and must
not be confused with the noncollinearity due to Dzyaloshinskii–Moriya interactions [16].

Commensurate and incommensurate magnetization modes in half metals (section 6) are
important, because they yield spin mixing. In k-space, the whole spectrum of k-values is
necessary to explain the spin structure of the system. A semiquantitative two-level solution is
to restrict the consideration to the most important wavevectors: k = 0 and k = ko. Projecting
the problem onto the two modes yields the equations [16]

〈m〉 = 〈 f 〉
h +�J/2

(6a)

and

mo = fo

h −�J/2
. (6b)

Here 〈m〉 and 〈 f 〉 are the transverse-magnetization and random-thermal-force volume averages,
whereas mo and fo ∼ ∫ exp(iko ·r) f (r) dV are the amplitude of the noncollinear mode and the
corresponding Fourier-transformed inhomogeneity, respectively, and the (positive) eigenvalue
difference �J describes the relative stability of the noncollinear state.

Equation (6) shows that the noncollinear exchange (�J ) suppresses ferromagnetic
excitations (a) but enhances and stabilizes the noncollinear mode (b). In a very large positive
field, both 〈m〉 and mo are zero, that is, Mz is close to saturation. With reduced field strength
h, both the volume-averaged random forces, 〈f〉, and the random-force projections onto the
chiral mode, fo, tend to destabilize the ferromagnetic state. However, due to the opposite sign
of the �J contribution, the incommensurate mode is more enhanced; when h = D J/2, then
the saturated or aligned state becomes unstable, and the magnet becomes a ‘spin colloid’ [16].
Such noncollinear modes may also be of interest in other areas of technology, such as room-
temperature magnetic cooling, because they are able to absorb a certain amount of heat
(magnetic entropy).

7



J. Phys.: Condens. Matter 19 (2007) 315202 R Skomski

Figure 5. Simplified DOSs for (a) ferromagnetic and (b) antiferromagnetic order. This example
illustrates how the DOSs depend on the local magnetization direction.

5. Band-structure and correlation effects

Sections 3 and 4 have focused on thermal excitations where the magnitude of the atomic
moment is conserved, assuming that the localized regime of section 3 is more adequate than
the opposite itinerant regime outlined in figure 2. The localized regime is a fair starting point
for many magnets, but in reality there is always some moment reduction. First, in a one-
electron picture, any attempt to change the angle between the moments of neighbouring atoms
may reduce the moment. The VWI ferromagnetism discussed in section 2 is a drastic case,
but similar phenomena occur in half-metallic ferromagnets. Second, solid-state magnetism
is caused by electron–electron interactions, but one-electron calculations ignore correlation
corrections and may overestimate the magnetic moment. For example, figures 1(a) and (c)
illustrate how nonquasiparticle excitations [12, 15] change the density of states (DOS) near the
Fermi level. This section deals with the relation between band-structure effects and electron–
electron interactions (correlations). By analysing one-electron effects (section 5.1), non-Fermi-
liquid contributions (section 5.2), and Kondo-type interactions (section 5.3) it is argued that
correlation effects are relatively unimportant in typical half-metallic magnets.

5.1. Band structure and magnetic order

Spin inhomogeneities may alter the DOS beyond the Stoner shift shown in figure 2. An
instructive example is the extreme limit of antiferromagnetic order, where nearest-neighbour
spins belong to different sublattices (1 and 2) of antiparallel spin orientation. This effect is
actually encountered in manganites, where ferromagnetic (FM) and antiferromagnetic (AFM)
configurations compete [9]. Figure 5 compares the schematic DOS for the FM (a) and AFM
(b) cases. The origin of the big difference is well understood. In antiferromagnets, each
second spin has the ‘wrong’ orientation, because the Stoner or V term in equation (2) changes
sign. Hopping onto neighbouring sites is therefore unfavourable, and the AFM bands are much
narrower than the FM bands.

The difference between the FM and AFM DOSs in figure 5 is the main reason for the
frequent occurrence of antiferromagnetism in the middle of the 3d series, as exemplified by
elemental Mn. It also explains why FM and AFM manganites are conducting and insulating,
respectively, and is one aspect of the double exchange [28, 29] in manganites (section 5.3).

8
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Figure 6. Densities of states in a one-dimensional spin model. (a) Ferromagnet (bright) and Curie
paramagnet (dark), and (b) antiferromagnet (bright) and incommensurate magnet with ka/2π = 0.3
(dark). In all cases, only one spin direction is shown.

To gauge the effect of thermally disordered and incommensurate spin states on the
band structure, we exploit the random-alloy analogy of spin disorder, where A and B atoms
correspond to ↑ and ↓ moments. The effect is seen most easily in one dimension: the
effect of disorder increases with decreasing dimensionality. Figure 6 compares the DOSs
for various configurations. Only one spin direction is shown, and the ratio V/t of on-site
exchange to hopping is equal to 0.9. The swallowtail shape of the ferromagnetic DOS is a one-
dimensional band-structure effect, but otherwise the bright (FM and AFM) regions in figure 6
are equivalent to figure 5. The peaks and valleys in the dark regions of figure 6 reflect electronic
Bragg reflections (a) at well-aligned spins (θ ≈ 0◦ or 180◦) and (b) at the noncollinear spin
distribution. The dark regions exhibit a particularly strong dependence on the details of the
model and, in (b), on the wavevector of the magnons.

In spite of the drastic band-structure changes, the atoms may keep their magnetic moments.
The random-alloy or ‘paramagnetic’ DOS in figure 6 is similar to the modification of the band
structure of rare-earth magnets due to Gd3+ ions [30], although the metallic Gd3+ moment is
always conserved, whereas 3d moments may or may not be conserved. For example, first-
principles calculations indicate that Mn moments in the half-metallic alloy NiMnSb are very
stable, whereas the Ni moment easily collapses [17]. The Ni moment (0.26 μB) is much smaller
than the Mn moment (3.7 μB) and contributes very little to the magnetization, but the Ni
plays an important role in the formation of the hybridization gap. This is an example of a
thermally distorted band structure mentioned at the end of section 3. However, the assumption
of pronounced spin misalignment, epitomized by figure 1 in [17], implies a contribution similar
to figures 1(b) and 4, and blurs the distinction between spin mixing and band-structure effects.

A simpler and physically more transparent interpretation is that the thermally reduced Mn
magnetization yields a diminished Mn exchange splitting. Straightforward bookkeeping for
weak ferromagnets with Stoner-type rectangular bands of width W then yields an approximate
relation for the temperature dependence of the hybridization gap,

�(T ) = �(0)− W

5
(m(0)− m(T )) (7)

where m(T ) is the Mn magnetization measured in μB per atom. The gap reaches zero at a
transition temperature T ∗ obtained from m(T ∗) = m(0)−5�(0)/W . For typical half-metallic

9
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ferromagnets, 5�(0)/W < 1, and the gap closes well below the Curie temperature. The effect
is most pronounced for narrow gaps and wide bands, as contrasted to the regime considered in
section 3, where the band width and gap are comparable. A very similar mechanism exists in
strong ferromagnets, which leads to the conjecture that thermal gap closure is a typical rather
than exeptional new feature.

Incidentally the behaviour of NiMnSb is very similar to that encountered in L10 alloys
such as CoPt and FePt [31, 32], where the 3d atoms spin polarize the 4d/5d atoms and where
the 4d/5d moment collapses in an antiferromagnetic environment. In both cases, the unstable
subsystem is an exchange-enhanced Pauli paramagnet, although nonlinear contributions are not
necessarily negligible and series expansion [17] is a rather crude approach (see p 120 in [8]).

5.2. Correlations and nonquasiparticle effects

In the limit of strong correlations, there are stable magnetic moments (sections 3 and 4).
The moments are often reproduced by one-electron calculations, which treat many-body
interactions on a mean-field level (on-site Stoner exchange), but other properties, such as
excitation energies and charge fluctuations, are less well described. More generally, strongly
correlated magnets exhibit deviations from the Fermi-liquid or quasiparticle theory. A well-
known example is spin–charge separation [7, 33], which means that the electron positions
(charge degree of freedom) become largely independent of the spin direction.

Figure 1(c) shows that the nonquasiparticle states [12, 15] yield qualitatively new features.
However, this does not necessarily mean that they yield strong deviations from (5). At low
temperatures, the calculation by Irkhin et al [12] reproduces the spin-mixing expression (5), but
above a crossover temperature T ∗, the magnetization is drastically reduced [12]. The crossover
temperature scales as

T ∗ ∼ Tc
m2�2

s

k4
F

. (8)

When I ∼ �s is much larger than t ∼ k2
F/m, as assumed in the localized picture of sections 3

and 4, then T ∗ � Tc and the corrections due to (8) can be ignored. In the opposite limit,
T ∗  Tc, the finite-temperature magnetization undergoes a significant reduction.

Equation (8) indicates that the assumption of a well-conserved atomic spin splitting is
not applicable for T > T ∗ [12]. However, the reduction is a Stoner effect similar to (7)
rather than a correlation effect, because T ∗ decreases with I and the magnetization reduction
is most pronounced for small I , where standard band-structure and Fermi-liquid theories are
applicable. Details of the DOS [12] affect the outcome of this band-structure modification but
do not introduce correlations.

Note that Otto et al [6] investigated the electrical resistivity and the Hall effect of various
semi-Heusler alloys, including NiMnSb, and concluded that the local-band description is much
more adequate than the itinerant or ‘weak-exchange’ description. In their paper, the term
local-band magnetism is defined very broadly, including the disordered local moment (DLM)
picture [34] and anticipating the spin mixing of section 3.

5.3. Kondo interactions

An interesting correlation effect in systems containing both localized and extended electrons
is the Kondo effect. In a narrow sense, the term refers to the resistance minimum observed
in metals containing magnetic impurities, but the phenomenon also occurs in other correlated
systems, such as heavy fermions and manganites. A key feature of the Kondo effect is the
simultaneous involvement of strongly correlated electrons in localized orbitals |loc〉 and weakly
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correlated electrons in extended orbitals |ext〉 [7]. Examples of localized and extended orbitals,
respectively, are the following pairs: (i) 3d and 4s electrons in dilute magnetic transition-metal
alloys such as Cu1−x Fex , (ii) 4f or 5f and conduction electrons in heavy-fermion compounds
such as CeAl2, and (iii) Mn t2g and eg and electrons in manganites. In the case of Mn, the
interaction gives rise to ferromagnetic double exchange, and a similar situation is encountered
in the half-metallic oxide CrO2. The corresponding ferromagnetic spin alignment enhances not
only the magnetization but also the conductivity (section 5.1). Since the Kondo effect involves
strongly correlated electrons, it can be used to investigate correlations.

A comprehensive description of the Kondo effect requires the consideration of many
electrons, but to see the essential many-body features of the phenomenon, it is sufficient to
consider just two electrons in two orbitals [7]. It is convenient to start from the two-electron
wavefunction

|ψ〉 = c1|ext〉|ext〉 + c2|ext〉|loc〉 + c3|loc〉|ext〉 + c4|loc〉|loc〉. (9)

For example, the c2-term means that the first and second electrons are in the extended and
localized states, respectively. In terms of the basis defined by (9), the Hamiltonian is

H =
⎛
⎜⎝

V t t 0
t 0 0 t
t 0 0 t
0 t t U − V

⎞
⎟⎠ . (10)

Here V = Eext − Eloc is the spin-independent orbital energy difference between the extended
and localized electrons (V > 0), U ∼ I is the Coulomb energy, and t < 0 is the hopping
integral between |ext〉 and |loc〉. The orbital energy V favours the occupancy of the localized
orbital, but the strong Coulomb repulsion U > V makes the double occupancy of this orbital
energetically unfavourable. Since U is very large, we can ignore the admixture of |loc〉 |loc〉
character to the system’s low-lying states.

In the absence of hopping, the ground state of (10) is two-fold degenerate, corresponding to
the wavefunctions |ψ±〉 = |ext〉|loc〉±|loc〉|ext〉. The function |ψ+〉 is symmetric and describes
an antiferromagnetic (AFM) spin singlet (↑↓, S = 0), whereas the antisymmetric wavefunction
|ψ−〉 corresponds to a ferromagnetic (FM) triplet (↑↑, S = 1). In the presence of hopping, the
triplet remains unaffected (E = 0), but the AFM singlet, |ext〉|loc〉+|loc〉|ext〉, hybridizes with
|ext〉|ext〉. This hybridization lowers the energy of the AFM state by 2t2/V and means that the
ground state is antiferromagnetic. Figure 7 shows the corresponding level splitting. Note that
the FM state is unable to benefit from the hopping, because the Pauli principle excludes the
double occupancy of any orbital by parallel spins.

In the ground state, the localized spin is compensated (screened) by the delocalized
spin, but when the temperature exceeds the Kondo temperature TK, then the ↑↓ and ↑↑
configurations are both occupied and the net coupling between screening cloud and the
localized spin vanish. Together with the accompanying resistance minimum near TK, this is a
signature of the Kondo effect. Note that the Kondo temperature 2t2/V is formally independent
of U but is based on the assumption of strong correlations, U = ∞. Physically, the first
and second electrons are attracted by the low orbital energy of the localized orbital (energy
gain V ), but the second electron is repelled by the strong Coulomb interaction of the first
electron. In the one-electron approximation, the second electron does not know the position of
the first electron, because it interacts with an average electron distribution. This overestimates
the Coulomb energy.

Interestingly, the Kondo splitting of figure 7 is reproduced by an unrestricted Hartree–Fock
(HF) approximation. The idea is to use a single Slater determinant constructed from arbitrary
one-electron wavefunctions, as proposed by Coulson and Fischer [35]. In their original form,
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Figure 7. Kondo interactions in a half-metallic model. The bright grey configurations indicate
admixture due to hybridization. Simplifying somewhat, the model is of type III, but similar effects
exist in type-I half-metals, such as CrO2.

the Fisher–Coulson wavefunctions describe a H2 molecule by partially localized one-electron
orbitals, in contrast to ‘Bloch-symmetric’ bonding and antibonding one-electron orbitals with
symmetric electron densities. Describing the FM state by |ψ1〉 = |ext〉 and |ψ2〉 = |loc〉, using
the AFM ansatz |ψ1〉 = |ext〉 and |ψ2〉 = |loc〉 + co|ext〉, and minimizing the AFM energy
yields co = −Eo/2t and reproduces the Kondo splitting. Bloch-symmetric and unrestricted
Hartree–Fock approximations are a notoriously unreliable tool to investigate excitations in
correlated electron systems. However, in the present case, the relevant first excited state is
ferromagnetic, and it is well-known that the Pauli principle takes care of correlations in the
ferromagnetic state.

6. Discussion and conclusions

The experimental investigation of half metals poses a number of challenges, and a variety of
questions remain to be answered. First, the detection of half-metallic ferromagnetism is more
complicated than the detection of ‘simpler’ phenomena, such as ordinary ferromagnetism and
metallic conductivity [2]. Second, the phenomenon itself has been questioned on intrinsic
and extrinsic grounds [3], and it seems that both real-structure imperfections and thermal
disorder have a very negative effect on the spin polarization. Important real-structure or
extrinsic features are atomic defects, grain boundaries, interfaces and nanoscale geometrical
features, which all affect the local DOS. For example, spin mixing involving nanojunctions
was investigated in [36].

A different question is the existence of intrinsic half-metallic ferromagnetism in perfect
bulk materials. As pointed out in section 4, magnetic measurements are often performed in high
magnetic fields; this overestimates the spin polarization by aligning the magnetic sublattices
and makes the measurements less sensitive to a small spin minority density of states. The
compound structure of half metals yields a number of low-energy transverse and longitudinal
optical modes, which couple to spin-wave modes and reduce the net magnetization [3, 4].
In real space, the magnetization modes correspond to a tilting between neighbouring atomic
spins, depending on the k-vector where the phonon and magnon bands cross. Generally,
the closer to the Brillouin zone edge the magnons and transverse optical modes couple, the
greater the tilt angle. The corresponding moment misalignment gives rise to a pronounced
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spin mixing (section 4). Examples of the involvement of phonons NiMnSb, CrO2, Fe3O4, and
La0.7Sr0.3MnO3 [3, 4]. In the latter case, the spin-wave softening is related to the proximity of
the charge-ordered insulating state, that is, to the FM–AFM transition mentioned in section 5.
The spin mixing is complemented by temperature-dependent changes in the density of states,
both subband shifts, as in figure 2, and distortions of the shape, as in figure 6. Little is
known about the relative depolarization contributions of the different mechanisms, and their
investigation remains an ongoing challenge.

One aspect of this paper is the role of correlations. In the limit of strong intra-atomic
exchange, the spin-mixing model of section 3 works well, although it fails to address specific
correlation effects. Magnons are included and are well described in this strong-correlation
regime, because changes in the density of the states caused by disorder and noncollinear spin
states leave the atomic moments unchanged. In the opposite limit of relatively weak intra-
atomic exchange, one-electron effects yield a pronounced modification of the atomic moments,
similar to the moment reduction in very weak itinerant magnets. There are no magnons in the
usual sense, especially at large wavevectors. If one tries to create a noncollinear state with large
k-vector, then the magnetization collapses in this regime, rather than undergoing rotation. A
good example is the collapse of the Ni moment discussed in section 5.1.

Half-metallic ferromagnets seem to exhibit a general trend towards magnetic instabilities,
both locally and globally. This reflects the band structure of typical half-metals, with several
nonequivalent sites or sublattices, competing ferromagnetic and antiferromagnetic interactions,
and partially unstable atomic moments. Compared to alloys, moment reductions, or ‘high-
spin–low-spin’ transitions, may be less important in oxides, but oxides tend to exhibit relatively
weak ferromagnetic or predominantly antiferromagnetic interatomic exchange [8]. In a crude
approximation, the temperature dependence of the hybridization gap of both alloys and oxides
is described by (7), so there are two ways of improving the spin polarization below Tc:
(i) larger zero-temperature hybridization gaps and (ii) less pronounced interatomic hopping
(narrow bands). Structural imperfections—such as defects and interfaces, short-wavelength
thermal excitations, and phonons—amplify the effect of magnetic instabilities. Defects
remain a nontrivial challenge in oxides, including CrO2, which is one of the few oxides with
predominantly ferromagnetic exchange.

The spin structure is also influenced by spin–orbit coupling [8, 16, 27, 37, 38]. Spin–
orbit interactions are often small in simple ferromagnets but they become important when
the leading exchange and hopping contributions nearly cancel each other. One example is
Dzyaloshinskii–Moriya (DM) interactions [16, 27, 37], which occur not only in perfect crystals
with broken inversion symmetry but also in spin glasses and nanostructures. Other examples
are magnetocrystalline anisotropy and magnetostriction, which both originate from spin–orbit
coupling and may enhance the noncollinearity of the spin state of polycrystalline and imperfect
samples.

In conclusion, we have investigated the spin polarization of half-metallic ferromagnets.
At finite temperatures, the picture is intermediate between the strongly correlated Heisenberg
and weakly correlated one-electron limits. In addition to Heisenberg interactions with
largely conserved magnetic moments and spin mixing, there are Stoner-type contributions,
characterized by reduced atomic moments, and complicated distortions of the DOS. In the
simplest model, the Stoner mechanism means that the hybridization gap closes due to reduced
exchange splitting between majority and minority bands. These mechanisms all contribute
to the widespread thermal depolarization and are enhanced by the presence of two or more
sublattices in typical half metals. Correlations are analysed by a version of the Kondo model
and by an unrestricted Hartree–Fock approximation, which becomes exact for the considered
Kondo problem. However, correlation effects are relatively unimportant in typical half-metals,
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and the essential physics of finite-temperature depolarization is contained in the one-electron
picture.
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